Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

The evolution of vehicles has led to the integration of numerous devices that communicate via the controller area network (CAN) protocol. This protocol lacks security measures, leaving interconnected critical components vulnerable. The expansion of local and remote connectivity has increased the attack surface, heightening the risk of unauthorized intrusions. Since recent studies have proven external attacks to constitute a realworld threat to vehicle availability, driving data confidentiality, and passenger safety, researchers and car manufacturers focused on implementing effective defenses. intrusion detection systems (IDSs), frequently employing machine learning models, are a prominent solution. However, IDS are not foolproof, and attackers with knowledge of these systems can orchestrate adversarial attacks to evade detection. In this paper, we evaluate the effectiveness of popular adversarial techniques in the automotive domain to ascertain the resilience, characteristics, and vulnerabilities of several ML-based IDSs. We propose three gradient-based evasion algorithms and evaluate them against six detection systems. We find that the algorithms’ performance heavily depends on the model’s complexity and the intended attack’s quality. Also, we study the transferability between different detection systems and different time instants in the communication.

View More Papers

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

Enhanced Vehicular Roll-Jam Attack using a Known Noise Source

Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More