James Fitts, Chris Fennel (Walmart)

Red Team campaigns simulate real adversaries and provide real value to the organization by exposing vulnerable infrastructure and processes that need to be improved. The challenge is that as organizations scale in size, time between campaign retesting increases. This can lead to gaps in ensuring coverage and finding emerging issues. Automation and simulation of adversarial attacks can be created to address the scale problem. Collecting libraries of Tactics, Techniques and Procedures (TTPs) and testing them via adversarial emulation software. Unfortunately, automation lacks feedback and cannot analyze the data in real time with each test.

To address this problem, we introduce RAMPART (Repeated And Measured Post Access Red Teaming). RAMPART campaigns are very quick campaigns (1 day) meant to bridge the gap between the automation of Red Team simulations and full blown Red Team campaigns. The speed of these campaigns comes from pre-built playbooks backed by Cyber Threat Intelligence (CTI) research. This approach enables a level of freedom to make decisions based on the data the red team analyst sees from their tooling and allows testing further in the attack chain to test detections that could be missed otherwise.

View More Papers

Towards Integrating Human-Centered Cybersecurity Research Into Practice: A Practitioner...

Julie Haney, Clyburn Cunningham, Susanne Furman (National Institute of Standards and Technology)

Read More

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More