Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Physical adversarial objects-evasion attacks pose a safety concern for automated driving systems (ADS) and are a significant obstacle to their widespread adoption. To enhance the ability of ADS to address such concerns, we aim to propose a human-AI collaboration framework to bring human in the loop to mitigate the attacks. In this WIP work, we investigate the performance of two object detectors in the YOLO-series (YOLOv5 and YOLOv8) against three physical adversarial object-evasion attacks across different driving contexts in the CARLA simulator. Using static images, we found that YOLOv8 generally outperformed YOLOv5 in attack detection but remained susceptible to certain attacks in specific contexts. Moreover, the study results showed that none of the attacks had achieved a high attack success rate in dynamic tests when system-level features were considered. Nevertheless, such detection results varied across different locations for each attack. Altogether, these results suggest that perception in autonomous driving, the same as human perception in manual driving, might also be context-dependent. Moreover, our results revealed object detection failures at a braking distance anticipated by human drivers, suggesting a necessity to involve human drivers in future evaluation processes.

View More Papers

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

Beyond the Surface: Uncovering the Unprotected Components of Android...

Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Read More