Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

—Graphics processing units (GPUs) on modern computers are susceptible to electromagnetic (EM) side-channel attacks that can leak sensitive information without physical access to the target device. Website fingerprinting through these EM emanations poses a significant privacy threat, capable of revealing user activities from a distance. This paper introduces EMMasker, a novel software-based solution designed to mitigate such attacks by obfuscating the EM signals associated with web activity. EMMasker operates by generating rendering noise within the GPU using WebGL shaders, thereby disrupting the patterns of EM signals and confounding any attempts at identifying user online activities. Our approach strikes a balance between the effectiveness of obfuscation and system efficiency, ensuring minimal impact on GPU performance and user browsing experience. Our evaluation shows that EMMasker can significantly reduce the accuracy of state-of-the-art EM website fingerprinting attacks from average accuracy from 81.03% to 22.56%, without imposing a high resource overhead. Our results highlight the potential of EMMasker as a practical countermeasure against EM side-channel website fingerprinting attacks, enhancing privacy and security for web users.

View More Papers

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More