Simon Koch, David Klein, and Martin Johns (TU Braunschweig)

Are GitHub stars a good surrogate metric to assess the importance of open-source code? While security research frequently uses them as a proxy for importance, the reliability of this relationship has not been studied yet. Furthermore, its relationship to download numbers provided by code registries – another commonly used metric – has yet to be ascertained. We address this research gap by analyzing the correlation between both GitHub stars and download numbers as well as their correlation with detected deployments across websites. Our data set consists of 925 978 data points across three web programming languages: PHP, Ruby, and JavaScript. We assess deployment across websites using 58 hand-crafted fingerprints for JavaScript libraries. Our results reveal a weak relationship between GitHub Stars and download numbers ranging from a correlation of 0.47 for PHP down to 0.14 for JavaScript, as well as a high amount of low star and high download projects for PHP and Ruby and an opposite pattern for JavaScript with a noticeably higher count of high star and apparently low download libraries. Concerning the relationship for detected deployments, we discovered a correlation of 0.61 and 0.63 with stars and downloads, respectively. Our results indicate that both downloads and stars pose a moderately strong indicator of the importance of client-side deployed JavaScript libraries.

View More Papers

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

Untangle: Multi-Layer Web Server Fingerprinting

Cem Topcuoglu (Northeastern University), Kaan Onarlioglu (Akamai Technologies), Bahruz Jabiyev (Northeastern University), Engin Kirda (Northeastern University)

Read More

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More