Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Electromagnetic (EM) side channel attacks (SCA) have been very powerful in extracting secret information from hardware systems. Existing attacks usually extract discrete values from the EM side channel, such as cryptographic key bits and operation types. In this work, we develop an EM SCA to extract continuous values that are being used in an averaging process, a common operation used in federated learning. A convolutional neural network (CNN) framework is constructed to analyze the collected EM data. Our results show that our attack is able to distinguish the distributions of the underlying data with up to 93% accuracy, indicating that applications previously considered as secure, such as federated learning, should be protected from EM side-channel attacks in their implementation.

View More Papers

WIP: Adversarial Object-Evasion Attack Detection in Autonomous Driving Contexts:...

Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

On Precisely Detecting Censorship Circumvention in Real-World Networks

Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More