Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Electromagnetic (EM) side channel attacks (SCA) have been very powerful in extracting secret information from hardware systems. Existing attacks usually extract discrete values from the EM side channel, such as cryptographic key bits and operation types. In this work, we develop an EM SCA to extract continuous values that are being used in an averaging process, a common operation used in federated learning. A convolutional neural network (CNN) framework is constructed to analyze the collected EM data. Our results show that our attack is able to distinguish the distributions of the underlying data with up to 93% accuracy, indicating that applications previously considered as secure, such as federated learning, should be protected from EM side-channel attacks in their implementation.

View More Papers

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More