Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Electromagnetic (EM) side channel attacks (SCA) have been very powerful in extracting secret information from hardware systems. Existing attacks usually extract discrete values from the EM side channel, such as cryptographic key bits and operation types. In this work, we develop an EM SCA to extract continuous values that are being used in an averaging process, a common operation used in federated learning. A convolutional neural network (CNN) framework is constructed to analyze the collected EM data. Our results show that our attack is able to distinguish the distributions of the underlying data with up to 93% accuracy, indicating that applications previously considered as secure, such as federated learning, should be protected from EM side-channel attacks in their implementation.

View More Papers

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More

Securing Automotive Software Supply Chains (Long)

Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Read More