Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Attackers have found numerous vulnerabilities in the Electronic Control Units (ECUs) of modern vehicles, enabling them to stop the car, control its brakes, and take other potentially disruptive actions. Many of these attacks were possible because the vehicles had insecure In-Vehicle Networks (IVNs), where ECUs could send any message to each other. For example, an attacker who compromised an infotainment ECU might be able to send a braking message to a wheel. In this work, we introduce a scheme based on distributed firewalls to block these unauthorized messages according to a set “security policy” defining what transmissions each ECU should be able to send and receive. We leverage the topology of new switched, zonal networks to authenticate messages without cryptography, using Ternary Content Addressable Memory (TCAMs) to enforce the policy at wire-speed. Crucially, our approach minimizes the security burden on edge ECUs and places control in a set of hardened zonal gateways. Through an OMNeT++ simulation of a zonal IVN, we demonstrate that our scheme has much lower overhead than modern cryptography-based approaches and allows for realtime, low-latency (​<0.1 ms) traffic.

View More Papers

IDA: Hybrid Attestation with Support for Interrupts and TOCTOU

Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Read More

Towards Automated Regulation Analysis for Effective Privacy Compliance

Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More