Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

The advent of deep learning has brought about vast improvements to computer vision systems and facilitated the development of self-driving vehicles. Nevertheless, these models have been found to be susceptible to adversarial attacks. Of particular importance to the research community are patch attacks, which have been found to be realizable in the physical world. While certifiable defenses against patch attacks have been developed for tasks such as single-label classification, there does not exist a defense for multi-label classification. In this work, we propose such a defense called Multi-Label PatchCleanser, an extension of the current state-of-the-art (SOTA) method for single-label classification. We find that our approach can achieve non-trivial robustness on the MSCOCO 2014 validation dataset while maintaining high clean performance. Additionally, we leverage a key constraint between patch and object locations to develop a novel procedure and improve upon baseline robust performance.

View More Papers

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More