Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Federated Learning (FL) has evolved into a pivotal paradigm for collaborative machine learning, enabling a centralised server to compute a global model by aggregating the local models trained by clients. However, the distributed nature of FL renders it susceptible to poisoning attacks that exploit its linear aggregation rule called FEDAVG. To address this vulnerability, FEDQV has been recently introduced as a superior alternative to FEDAVG, specifically designed to mitigate poisoning attacks by taxing more than linearly deviating clients. Nevertheless, FEDQV remains exposed to privacy attacks that aim to infer private information from clients’ local models. To counteract such privacy threats, a well-known approach is to use a Secure Aggregation (SA) protocol to ensure that the server is unable to inspect individual trained models as it aggregates them. In this work, we show how to implement SA on top of FEDQV in order to address both poisoning and privacy attacks. We mount several privacy attacks against FEDQV and demonstrate the effectiveness of SA in countering them.

View More Papers

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More

LARMix: Latency-Aware Routing in Mix Networks

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Read More