Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Federated Learning (FL) has evolved into a pivotal paradigm for collaborative machine learning, enabling a centralised server to compute a global model by aggregating the local models trained by clients. However, the distributed nature of FL renders it susceptible to poisoning attacks that exploit its linear aggregation rule called FEDAVG. To address this vulnerability, FEDQV has been recently introduced as a superior alternative to FEDAVG, specifically designed to mitigate poisoning attacks by taxing more than linearly deviating clients. Nevertheless, FEDQV remains exposed to privacy attacks that aim to infer private information from clients’ local models. To counteract such privacy threats, a well-known approach is to use a Secure Aggregation (SA) protocol to ensure that the server is unable to inspect individual trained models as it aggregates them. In this work, we show how to implement SA on top of FEDQV in order to address both poisoning and privacy attacks. We mount several privacy attacks against FEDQV and demonstrate the effectiveness of SA in countering them.

View More Papers

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More