Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Federated Learning (FL) has evolved into a pivotal paradigm for collaborative machine learning, enabling a centralised server to compute a global model by aggregating the local models trained by clients. However, the distributed nature of FL renders it susceptible to poisoning attacks that exploit its linear aggregation rule called FEDAVG. To address this vulnerability, FEDQV has been recently introduced as a superior alternative to FEDAVG, specifically designed to mitigate poisoning attacks by taxing more than linearly deviating clients. Nevertheless, FEDQV remains exposed to privacy attacks that aim to infer private information from clients’ local models. To counteract such privacy threats, a well-known approach is to use a Secure Aggregation (SA) protocol to ensure that the server is unable to inspect individual trained models as it aggregates them. In this work, we show how to implement SA on top of FEDQV in order to address both poisoning and privacy attacks. We mount several privacy attacks against FEDQV and demonstrate the effectiveness of SA in countering them.

View More Papers

MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Read More

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk...

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More