Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Recent work in ICML’22 established a connection between dataset condensation (DC) and differential privacy (DP), which is unfortunately problematic. To correctly connect DC and DP, we propose two differentially private dataset condensation (DPDC) algorithms—LDPDC and NDPDC. LDPDC is a linear DC algorithm that can be executed on a low-end Central Processing Unit (CPU), while NDPDC is a nonlinear DC algorithm that leverages neural networks to extract and match the latent representations between real and synthetic data. Through extensive evaluations, we demonstrate that LDPDC has comparable performance to recent DP generative methods despite its simplicity. NDPDC provides acceptable DP guarantees with a mild utility loss, compared to distribution matching (DM). Additionally, NDPDC allows a flexible trade-off between the synthetic data utility and DP budget.

View More Papers

TinyML meets IoBT against Sensor Hacking

Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More