Anis Yusof (NU Singapore)

To improve the preparedness of Security Operation Center (SOC), analysts may leverage provenance graphs to deepen their understanding of existing cyberattacks. However, the unknown nature of a cyberattack may result in a provenance graph with incomplete details, thus limiting the comprehensive knowledge of the cyberattack due to partial indicators. Furthermore, using outdated provenance graphs imposes a limit on the understanding of cyberattack trends. This negatively impacts SOC operations that are responsible for detecting and responding to threats and incidents. This paper introduces PROVCON, a framework that constructs a provenance graph representative of a cyberattack. Based on documented cyberattacks, the framework reproduces the cyberattack and generates the corresponding data for attack analysis. The knowledge gained from existing cyberattacks through the constructed provenance graph is instrumental in enhancing the understanding and improving decision-making in SOC. With the use of PROVCON, SOC can improve its cybersecurity posture by aligning its operations based on insights derived from documented observations.

View More Papers

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

RACONTEUR: A Knowledgeable, Insightful, and Portable LLM-Powered Shell Command...

Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Read More

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More