Anis Yusof (NU Singapore)

To improve the preparedness of Security Operation Center (SOC), analysts may leverage provenance graphs to deepen their understanding of existing cyberattacks. However, the unknown nature of a cyberattack may result in a provenance graph with incomplete details, thus limiting the comprehensive knowledge of the cyberattack due to partial indicators. Furthermore, using outdated provenance graphs imposes a limit on the understanding of cyberattack trends. This negatively impacts SOC operations that are responsible for detecting and responding to threats and incidents. This paper introduces PROVCON, a framework that constructs a provenance graph representative of a cyberattack. Based on documented cyberattacks, the framework reproduces the cyberattack and generates the corresponding data for attack analysis. The knowledge gained from existing cyberattacks through the constructed provenance graph is instrumental in enhancing the understanding and improving decision-making in SOC. With the use of PROVCON, SOC can improve its cybersecurity posture by aligning its operations based on insights derived from documented observations.

View More Papers

Transparency or Information Overload? Evaluating Users’ Comprehension and Perceptions...

Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

A Field Study to Uncover and a Tool to...

Leon Kersten (Eindhoven University of Technology), Kim Beelen (Eindhoven University of Technology), Emmanuele Zambon (Eindhoven University of Technology), Chris Snijders (Eindhoven University of Technology), Luca Allodi (Eindhoven University of Technology)

Read More

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance...

Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

Read More