Anis Yusof (NU Singapore)

To improve the preparedness of Security Operation Center (SOC), analysts may leverage provenance graphs to deepen their understanding of existing cyberattacks. However, the unknown nature of a cyberattack may result in a provenance graph with incomplete details, thus limiting the comprehensive knowledge of the cyberattack due to partial indicators. Furthermore, using outdated provenance graphs imposes a limit on the understanding of cyberattack trends. This negatively impacts SOC operations that are responsible for detecting and responding to threats and incidents. This paper introduces PROVCON, a framework that constructs a provenance graph representative of a cyberattack. Based on documented cyberattacks, the framework reproduces the cyberattack and generates the corresponding data for attack analysis. The knowledge gained from existing cyberattacks through the constructed provenance graph is instrumental in enhancing the understanding and improving decision-making in SOC. With the use of PROVCON, SOC can improve its cybersecurity posture by aligning its operations based on insights derived from documented observations.

View More Papers

Off-Path TCP Hijacking in Wi-Fi Networks: A Packet-Size Side...

Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

SIGuard: Guarding Secure Inference with Post Data Privacy

Xinqian Wang (RMIT University), Xiaoning Liu (RMIT University), Shangqi Lai (CSIRO Data61), Xun Yi (RMIT University), Xingliang Yuan (University of Melbourne)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More