Anis Yusof (NU Singapore)

To improve the preparedness of Security Operation Center (SOC), analysts may leverage provenance graphs to deepen their understanding of existing cyberattacks. However, the unknown nature of a cyberattack may result in a provenance graph with incomplete details, thus limiting the comprehensive knowledge of the cyberattack due to partial indicators. Furthermore, using outdated provenance graphs imposes a limit on the understanding of cyberattack trends. This negatively impacts SOC operations that are responsible for detecting and responding to threats and incidents. This paper introduces PROVCON, a framework that constructs a provenance graph representative of a cyberattack. Based on documented cyberattacks, the framework reproduces the cyberattack and generates the corresponding data for attack analysis. The knowledge gained from existing cyberattacks through the constructed provenance graph is instrumental in enhancing the understanding and improving decision-making in SOC. With the use of PROVCON, SOC can improve its cybersecurity posture by aligning its operations based on insights derived from documented observations.

View More Papers

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

What Makes Phishing Simulation Campaigns (Un)Acceptable? A Vignette Experiment

Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More