Seth Hasings (University of Tulsa)

Security Operations Centers (SOCs) receive thousands of security alerts each day, and analysts are responsible for evaluating each alert and initiating corrective action when necessary. Many of these alerts require consulting user authentication logs, which are notoriously messy and designed for machine use rather than human interpretability. We apply a novel methodology for processing raw logs into interpretable user authentication events in a university SOC dashboard tool. We review steps for data processing and describe views designed for analysts. To illustrate its value, we utilized the dashboard on a 90-day sample of alert logs from a university SOC. We present two representative alerts from the sample as case studies to motivate and demonstrate the generalized workflows. We show that enhanced data from the dashboard could be utilized to completely investigate over 84% of alerts in the sample without additional context or tools, and a further 13% could be partially investigated.

View More Papers

Delay-allowed Differentially Private Data Stream Release

Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More