Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

The Internet of Things (IoT) is experiencing exponential growth, with projections estimating over 29 billion devices by 2027. These devices often have limited resources, necessitating the use of lightweight communication protocols. MQTT is a widely used protocol in the IoT domain, but defective security configurations can pose significant risks for the users. In this work, we classify the most commonly used open-source IoT applications that utilize MQTT as their primary communication protocol and evaluate the associated attack scenarios. Our analysis shows that home automation IoT applications have the highest number of exposed devices. In addition, our examination suggests that tracking applications are prone to higher risks as the normalized percentage of exposed devices for this category is 6.85% while only 2.91% of home automation devices are exposed. To tackle these issues, we developed a lightweight, opensource exposure detection system suitable for both computerbased clients and ESP32 microcontrollers. This system warns the users of compromised MQTT broker which enhances the overall security in IoT deployments without any significant overhead.

View More Papers

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More

FUZZUER: Enabling Fuzzing of UEFI Interfaces on EDK-2

Connor Glosner (Purdue University), Aravind Machiry (Purdue University)

Read More