Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

The Internet of Things (IoT) is experiencing exponential growth, with projections estimating over 29 billion devices by 2027. These devices often have limited resources, necessitating the use of lightweight communication protocols. MQTT is a widely used protocol in the IoT domain, but defective security configurations can pose significant risks for the users. In this work, we classify the most commonly used open-source IoT applications that utilize MQTT as their primary communication protocol and evaluate the associated attack scenarios. Our analysis shows that home automation IoT applications have the highest number of exposed devices. In addition, our examination suggests that tracking applications are prone to higher risks as the normalized percentage of exposed devices for this category is 6.85% while only 2.91% of home automation devices are exposed. To tackle these issues, we developed a lightweight, opensource exposure detection system suitable for both computerbased clients and ESP32 microcontrollers. This system warns the users of compromised MQTT broker which enhances the overall security in IoT deployments without any significant overhead.

View More Papers

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

All your (data)base are belong to us: Characterizing Database...

Kevin van Liebergen (IMDEA Software Institute), Gibran Gomez (IMDEA Software Institute), Srdjan Matic (IMDEA Software Institute), Juan Caballero (IMDEA Software Institute)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More