Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

The Internet of Things (IoT) is experiencing exponential growth, with projections estimating over 29 billion devices by 2027. These devices often have limited resources, necessitating the use of lightweight communication protocols. MQTT is a widely used protocol in the IoT domain, but defective security configurations can pose significant risks for the users. In this work, we classify the most commonly used open-source IoT applications that utilize MQTT as their primary communication protocol and evaluate the associated attack scenarios. Our analysis shows that home automation IoT applications have the highest number of exposed devices. In addition, our examination suggests that tracking applications are prone to higher risks as the normalized percentage of exposed devices for this category is 6.85% while only 2.91% of home automation devices are exposed. To tackle these issues, we developed a lightweight, opensource exposure detection system suitable for both computerbased clients and ESP32 microcontrollers. This system warns the users of compromised MQTT broker which enhances the overall security in IoT deployments without any significant overhead.

View More Papers

You Can Rand but You Can't Hide: A Holistic...

Inon Kaplan (Independent researcher), Ron even (Independent researcher), Amit Klein (The Hebrew University of Jerusalem, Israel)

Read More

Understanding Miniapp Malware: Identification, Dissection, and Characterization

Yuqing Yang (The Ohio State University), Yue Zhang (Drexel University), Zhiqiang Lin (The Ohio State University)

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More