Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

The decentralized and modular architecture of open radio access networks (O-RAN) enhances flexibility and interoperability but introduces significant challenges in efficiently managing resource allocation. The disaggregation of network functions across distributed unit, centralized unit, and RAN intelligent controller (RIC) creates complexities in coordinating resources across multiple network slices, each with distinct and dynamic quality of service (QoS) requirements. Traditional machine learning (ML) approaches for resource management often rely on extensive offline training, which is impractical in the highly variable and real-time environments of O-RAN systems. This paper presents LLM-xApp, a novel large language model (LLM)-powered xApp framework for adaptive radio resource management in O-RAN systems. The proposed framework is based on intelligently prompting LLM agents to dynamically optimize resource allocation to different network slices. Experimental evaluations are conducted on the OpenAI Cellular (OAIC) platform showcasing significant improvements in average data rates as well as the reliability of the slices, demonstrating the potential of LLMs to enhance real-time decision-making in next-generation wireless networks.

View More Papers

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in...

Fangming Gu (Institute of Information Engineering, Chinese Academy of Sciences), Qingli Guo (Institute of Information Engineering, Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology, Chinese Academy of Sciences), Qinghe Xie (Institute of Information Engineering, Chinese Academy of Sciences), Beibei Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Kangjie Lu (University of Minnesota),…

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More