Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

The decentralized and modular architecture of open radio access networks (O-RAN) enhances flexibility and interoperability but introduces significant challenges in efficiently managing resource allocation. The disaggregation of network functions across distributed unit, centralized unit, and RAN intelligent controller (RIC) creates complexities in coordinating resources across multiple network slices, each with distinct and dynamic quality of service (QoS) requirements. Traditional machine learning (ML) approaches for resource management often rely on extensive offline training, which is impractical in the highly variable and real-time environments of O-RAN systems. This paper presents LLM-xApp, a novel large language model (LLM)-powered xApp framework for adaptive radio resource management in O-RAN systems. The proposed framework is based on intelligently prompting LLM agents to dynamically optimize resource allocation to different network slices. Experimental evaluations are conducted on the OpenAI Cellular (OAIC) platform showcasing significant improvements in average data rates as well as the reliability of the slices, demonstrating the potential of LLMs to enhance real-time decision-making in next-generation wireless networks.

View More Papers

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More