Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Password composition policies (PCPs) are critical security rules that govern how users create passwords for online authentication. Despite passwords remaining the primary authentication method online, there is significant disagreement among experts, regulatory bodies, and researchers about what constitutes effective password policies. This lack of consensus has led to high variance in PCP implementations across websites, leaving both developers and users uncertain. Current approaches lack a theoretical foundation for evaluating and comparing different password composition policies. We show that a structure-based policy, such as the three-random words recommended by UK’s National Cyber Security Centre (NCSC), can improve password security. We demonstrate this using an empirical evaluation of labelled password datasets and a new theoretical framework. Using these methods we demonstrate the feasibility and security of multi-word password policy and extend the NCSC’s recommendation to five words to account for nonuniform word selection. These findings provide an evidence-based framework for password policy development and suggest that current web authentication systems should adjust their minimum word requirements upward while maintaining usability.

View More Papers

Misdirection of Trust: Demystifying the Abuse of Dedicated URL...

Zhibo Zhang (Fudan University), Lei Zhang (Fudan University), Zhangyue Zhang (Fudan University), Geng Hong (Fudan University), Yuan Zhang (Fudan University), Min Yang (Fudan University)

Read More

An Analysis of First-Party Cookie Exfiltration due to CNAME...

Tongwei Ren (Worcester Polytechnic Institute), Alexander Wittmany (University of Kansas), Lorenzo De Carli (Worcester Polytechnic Institute), Drew Davidsony (University of Kansas)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More