Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Password composition policies (PCPs) are critical security rules that govern how users create passwords for online authentication. Despite passwords remaining the primary authentication method online, there is significant disagreement among experts, regulatory bodies, and researchers about what constitutes effective password policies. This lack of consensus has led to high variance in PCP implementations across websites, leaving both developers and users uncertain. Current approaches lack a theoretical foundation for evaluating and comparing different password composition policies. We show that a structure-based policy, such as the three-random words recommended by UK’s National Cyber Security Centre (NCSC), can improve password security. We demonstrate this using an empirical evaluation of labelled password datasets and a new theoretical framework. Using these methods we demonstrate the feasibility and security of multi-word password policy and extend the NCSC’s recommendation to five words to account for nonuniform word selection. These findings provide an evidence-based framework for password policy development and suggest that current web authentication systems should adjust their minimum word requirements upward while maintaining usability.

View More Papers

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More