Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Companies publish privacy policies to improve transparency regarding the handling of personal information. A discrepancy between the description of the privacy policy and the user’s understanding can lead to a risk of a decrease in trust. Therefore, in creating a privacy policy, the user’s understanding of the privacy policy should be evaluated. However, the periodic evaluation of privacy policies through user studies takes time and incurs financial costs. In this study, we investigated the understandability of privacy policies by large language models (LLMs) and the gaps between their understanding and that of users, as a first step towards replacing user studies with evaluation using LLMs. Obfuscated privacy policies were prepared along with questions to measure the comprehension of LLMs and users. In comparing the comprehension levels of LLMs and users, the average correct answer rates were 85.2% and 63.0%, respectively. The questions that LLMs answered incorrectly were also answered incorrectly by users, indicating that LLMs can detect descriptions that users tend to misunderstand. By contrast, LLMs understood the technical terms used in privacy policies, whereas users did not. The identified gaps in comprehension between LLMs and users, provide insights into the potential of automating privacy policy evaluations using LLMs.

View More Papers

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More