Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Online abuse, a persistent aspect of social platform interactions, impacts user well-being and exposes flaws in platform designs that include insufficient detection efforts and inadequate victim protection measures. Ensuring safety in platform interactions requires the integration of victim perspectives in the design of abuse detection and response systems. In this paper, we conduct surveys (n = 230) and semi-structured interviews (n = 15) with students at a minority-serving institution in the US, to explore their experiences with abuse on a variety of social platforms, their defense strategies, and their recommendations for social platforms to improve abuse responses. We build on study findings to propose design requirements for abuse defense systems and discuss the role of privacy, anonymity, and abuse attribution requirements in their implementation. We introduce ARI, a blueprint for a unified, transparent, and personalized abuse response system for social platforms that sustainably detects abuse by leveraging the expertise of platform users, incentivized with proceeds obtained from abusers.

View More Papers

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More