Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Wireless devices, especially Bluetooth and Wi-Fi devices, emit radio communication both to scan for neighboring devices and to advertise themselves. For example, a mobile phone would typically be searching for Wi-Fi access points and Bluetooth devices, e.g., headsets, and advertise itself for connections. For this purpose, communication interfaces use a Medium Access Control (MAC) address which is a unique identifier to differentiate one device from another. However, the use of such unique identifiers can violate the privacy of the device and hence of the user; an attacker is able to use such unique identifiers in order to passively track a device. MAC address randomization – techniques that periodically change the MAC addresses of a device – were developed as a privacy-enhancing measure against such attacks. However research shows that this can be easily circumvented. In this paper, we survey approaches and techniques for metadata anonymization in Bluetooth and Wi-Fi, as well as the de-anonymization attacks. Many of these attacks rely on physical characteristics of the communication medium and on implementation flaws of both wireless protocols and MAC address randomization protocols. We conclude by discussing open challenges both in metadata protection and deanonymization.

View More Papers

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

Provably Unlearnable Data Examples

Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More