Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Wireless devices, especially Bluetooth and Wi-Fi devices, emit radio communication both to scan for neighboring devices and to advertise themselves. For example, a mobile phone would typically be searching for Wi-Fi access points and Bluetooth devices, e.g., headsets, and advertise itself for connections. For this purpose, communication interfaces use a Medium Access Control (MAC) address which is a unique identifier to differentiate one device from another. However, the use of such unique identifiers can violate the privacy of the device and hence of the user; an attacker is able to use such unique identifiers in order to passively track a device. MAC address randomization – techniques that periodically change the MAC addresses of a device – were developed as a privacy-enhancing measure against such attacks. However research shows that this can be easily circumvented. In this paper, we survey approaches and techniques for metadata anonymization in Bluetooth and Wi-Fi, as well as the de-anonymization attacks. Many of these attacks rely on physical characteristics of the communication medium and on implementation flaws of both wireless protocols and MAC address randomization protocols. We conclude by discussing open challenges both in metadata protection and deanonymization.

View More Papers

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

AlphaDog: No-Box Camouflage Attacks via Alpha Channel Oversight

Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More