Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Wireless devices, especially Bluetooth and Wi-Fi devices, emit radio communication both to scan for neighboring devices and to advertise themselves. For example, a mobile phone would typically be searching for Wi-Fi access points and Bluetooth devices, e.g., headsets, and advertise itself for connections. For this purpose, communication interfaces use a Medium Access Control (MAC) address which is a unique identifier to differentiate one device from another. However, the use of such unique identifiers can violate the privacy of the device and hence of the user; an attacker is able to use such unique identifiers in order to passively track a device. MAC address randomization – techniques that periodically change the MAC addresses of a device – were developed as a privacy-enhancing measure against such attacks. However research shows that this can be easily circumvented. In this paper, we survey approaches and techniques for metadata anonymization in Bluetooth and Wi-Fi, as well as the de-anonymization attacks. Many of these attacks rely on physical characteristics of the communication medium and on implementation flaws of both wireless protocols and MAC address randomization protocols. We conclude by discussing open challenges both in metadata protection and deanonymization.

View More Papers

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More