Rachael Little, Dongpeng Xu (University of New Hampshire)

Software obfuscation is a form of code protection designed to hide the inner workings of a program from reverse engineering and analysis. Mixed Boolean Arithmetic (MBA) is one popular form that obscures simple arithmetic expressions via transformation to more complex equations involving both boolean and arithmetic operations. Most prior works focused on developing strong MBA at the source code or expression level; however, how many of them are resilient against compiler optimizations still remain unknown. In this work, we carefully inspect the strength of MBA obfuscation after various compiler optimizations. We embed MBA expressions from several popular datasets into C programs and examine how they appear post-compilation using the compilers GCC, Clang, and MSVC. Surprisingly, we discover a notable trend of reduction in MBA size and complexity after compiler optimization. We report our findings and discuss how MBA expressions are impacted by compiler optimizations.

View More Papers

LibAFL QEMU: A Library for Fuzzing-oriented Emulation

Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

“Do We Call Them That? Absolutely Not.”: Juxtaposing the...

Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Luca Favaro (Technical University of Munich), and Florian Matthes (Technical University of Munich)

Read More

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion...

Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

Read More