Rachael Little, Dongpeng Xu (University of New Hampshire)

Software obfuscation is a form of code protection designed to hide the inner workings of a program from reverse engineering and analysis. Mixed Boolean Arithmetic (MBA) is one popular form that obscures simple arithmetic expressions via transformation to more complex equations involving both boolean and arithmetic operations. Most prior works focused on developing strong MBA at the source code or expression level; however, how many of them are resilient against compiler optimizations still remain unknown. In this work, we carefully inspect the strength of MBA obfuscation after various compiler optimizations. We embed MBA expressions from several popular datasets into C programs and examine how they appear post-compilation using the compilers GCC, Clang, and MSVC. Surprisingly, we discover a notable trend of reduction in MBA size and complexity after compiler optimization. We report our findings and discuss how MBA expressions are impacted by compiler optimizations.

View More Papers

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More