Akshat Singh Jaswal (Stux Labs), Ashish Baghel (Stux Labs)

Modern web applications are increasingly produced through AI-assisted development and rapid no-code deployment pipelines, widening the gap between accelerating software velocity and the limited adaptability of existing security tooling. Pattern-driven scanners fail to reason about novel contexts, while emerging LLM-based penetration testers rely on unconstrained exploration, yielding high cost, unstable behavior, and poor reproducibility.

We introduce AWE, a memory-augmented multi-agent framework for autonomous web penetration testing that embeds structured, vulnerability-specific analysis pipelines within a lightweight LLM orchestration layer. Unlike general-purpose agents, AWE couples context aware payload mutations and generations with persistent memory and browser-backed verification to produce deterministic, exploitation-driven results.

Evaluated on the 104-challenge XBOW benchmark, AWE achieves substantial gains on injection-class vulnerabilities - 87% XSS success (+30.5% over MAPTA) and 66.7% blind SQL injection success (+33.3%) - while being much faster, cheaper, and more token-efficient than MAPTA, despite using a midtier model (Claude Sonnet 4) versus MAPTA’s GPT-5. MAPTA retains higher overall coverage due to broader exploratory capabilities, underscoring the complementary strengths of specialized and general-purpose architectures. Our results demonstrate that architecture matters as much as model reasoning capabilities: integrating LLMs into principled, vulnerability-aware pipelines yields substantial gains in accuracy, efficiency, and determinism for injection-class exploits. The source code for AWE is available at: https://github.com/stuxlabs/AWE

View More Papers

On Borrowed Time: Measurement-Informed Understanding of the NTP Pool's...

Robert Beverly (San Diego State University), Erik Rye (Johns Hopkins University)

Read More

vSim: Semantics-Aware Value Extraction for Efficient Binary Code Similarity...

Huaijin Wang (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Abuse Resistant Traceability with Minimal Trust for Encrypted Messaging...

Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Guomin Yang (Singapore Management University), Biwen Chen (Chongqing University), Ze Jiang (Chongqing University), Jiacheng Wang (Nanyang Technological University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Read More