Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

CV-Inspector: Towards Automating Detection of Adblock Circumvention

Hieu Le (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Zubair Shafiq (University of California, Davis)

Read More

DNS Privacy Vs : Confronting protocol design trade offs...

Mallory Knodel (Center for Democracy and Technology), Shivan Sahib (Salesforce)

Read More