Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More