Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

PyPANDA: Taming the PANDAmonium of Whole System Dynamic Analysis

Luke Craig, Tim Leek (MIT Lincoln Laboratory), Andrew Fasano, Tiemoko Ballo (MIT Lincoln Laboratory, Northeastern University), Brendan Dolan-Gavitt (New York University), William Robertson (Northeastern University)

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

WIP: Infrastructure-Aided Defense for Autonomous Driving Systems: Opportunities and...

Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Read More

Empirical Scanning Analysis of Censys and Shodan

Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Read More