Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

Understanding Worldwide Private Information Collection on Android

Yun Shen (NortonLifeLock Research Group), Pierre-Antoine Vervier (NortonLifeLock Research Group), Gianluca Stringhini (Boston University)

Read More

Scenario-Driven Assessment of Cyber Risk Perception at the Security...

Simon Parkin (TU Delft), Kristen Kuhn, Siraj Ahmed Shaikh (Coventry University)

Read More

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More