Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More