Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Kalman Filter (KF) is widely used in various domains to perform sequential learning or variable estimation. In the context of autonomous vehicles, KF constitutes the core component of many Advanced Driver Assistance Systems (ADAS), such as Forward Collision Warning (FCW). It tracks the states (distance, velocity etc.) of relevant traffic objects based on sensor measurements. The tracking output of KF is often fed into downstream logic to produce alerts, which will then be used by human drivers to make driving decisions in near-collision scenarios. In this work, we demonstrate planning-based attacks on Forward Collision Warning — a machine-human hybrid system that uses KF. Based on our work published at the AAAI2021 conference, we use an MPC-based algorithm and show how an attacker can sequentially perturb vision measurements to change the FCW alert signals at desired points in time. We simulate our attack on CARLA using standard test protocols from the National Highway Traffic Safety Administration.

View More Papers

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More

Towards a TEE-based V2V Protocol for Connected and Autonomous...

Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Read More