Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Kalman Filter (KF) is widely used in various domains to perform sequential learning or variable estimation. In the context of autonomous vehicles, KF constitutes the core component of many Advanced Driver Assistance Systems (ADAS), such as Forward Collision Warning (FCW). It tracks the states (distance, velocity etc.) of relevant traffic objects based on sensor measurements. The tracking output of KF is often fed into downstream logic to produce alerts, which will then be used by human drivers to make driving decisions in near-collision scenarios. In this work, we demonstrate planning-based attacks on Forward Collision Warning — a machine-human hybrid system that uses KF. Based on our work published at the AAAI2021 conference, we use an MPC-based algorithm and show how an attacker can sequentially perturb vision measurements to change the FCW alert signals at desired points in time. We simulate our attack on CARLA using standard test protocols from the National Highway Traffic Safety Administration.

View More Papers

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

On the Insecurity of SMS One-Time Password Messages against...

Zeyu Lei (Purdue University), Yuhong Nan (Purdue University), Yanick Fratantonio (Eurecom & Cisco Talos), Antonio Bianchi (Purdue University)

Read More

Awakening the Web's Sleeper Agents: Misusing Service Workers for...

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More