Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Software libraries are foundational components in modern software ecosystems. Vulnerabilities within these libraries pose significant security threats. Fuzzing is a widely used technique for uncovering software vulnerabilities. However, its application to software libraries poses considerable challenges, necessitating carefully crafted drivers that reflect diverse yet correct API usages. Existing works on automatic library fuzzing either suffer from high false positives due to API misuse caused by arbitrarily generated API sequences, or fail to produce diverse API sequences by overly relying on existing code snippets that express restricted API usages, thus missing deeper API vulnerabilities.
This work proposes NEXZZER, a new fuzzer that automatically detects vulnerabilities in libraries. NEXZZER employs a hybrid relation learning strategy to continuously infer and evolve API relations, incorporating a novel driver architecture to augment the testing coverage of libraries and facilitate deep vulnerability discovery. We evaluated NEXZZER across 18 libraries and the Google Fuzzer Test Suite. The results demonstrate its considerable advantages in code coverage and vulnerability-finding capabilities compared to prior works. NEXZZER can also automatically identify and filter out most API misuse crashes. Moreover, NEXZZER discovered 27 previously unknown vulnerabilities in well-tested libraries, including OpenSSL and libpcre2. At the time of writing, developers have confirmed 24 of them, and 9 were fixed because of our reports.

View More Papers

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More