Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant Group)

Confidential computing is an emerging technique that provides users and third-party developers with an isolated and transparent execution environment. To support this technique, Arm introduced the Confidential Computing Architecture (CCA), which creates multiple isolated address spaces, known as realms, to ensure data confidentiality and integrity in security-sensitive tasks. Arm recently proposed the concept of confidential computing on GPU hardware, which is widely used in general-purpose, high-performance, and artificial intelligence computing scenarios. However, hardware and firmware supporting confidential GPU workloads remain unavailable. Existing studies leverage Trusted Execution Environments (TEEs) to secure GPU computing on Arm- or Intel-based platforms, but they are not suitable for CCA's realm-style architecture, such as using incompatible hardware or introducing a large trusted computing base (TCB). Therefore, there is a need to complement existing Arm CCA capabilities with GPU acceleration.

To address this challenge, we present CAGE to support confidential GPU computing for Arm CCA. By leveraging the existing security features in Arm CCA, CAGE ensures data security during confidential computing on unified-memory GPUs, the mainstream accelerators in Arm devices. To adapt the GPU workflow to CCA's realm-style architecture, CAGE proposes a novel shadow task mechanism to manage confidential GPU applications flexibly. Additionally, CAGE leverages the memory isolation mechanism in Arm CCA to protect data confidentiality and integrity from the strong adversary. Based on this, CAGE also optimizes security operations in memory isolation to mitigate performance overhead. Without hardware changes, our approach uses the generic hardware security primitives in Arm CCA to defend against a privileged adversary. We present two prototypes to verify CAGE's functionality and evaluate performance, respectively. Results show that CAGE effectively provides GPU support for Arm CCA with an average of 2.45% performance overhead.

View More Papers

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

On the Feasibility of CubeSats Application Sandboxing for Space...

Gabriele Marra (CISPA Helmholtz Center for Information Security), Ulysse Planta (CISPA Helmholtz Center for Information Security and Saarbrücken Graduate School of Computer Science), Philipp Wüstenberg (Chair of Space Technology, Technische Universität Berlin), Ali Abbasi (CISPA Helmholtz Center for Information Security)

Read More