Leon Trampert (CISPA Helmholtz Center for Information Security), Daniel Weber (CISPA Helmholtz Center for Information Security), Lukas Gerlach (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Michael Schwarz (CISPA Helmholtz Center for Information Security)

In an attempt to combat user tracking, both privacy-aware browsers (e.g., Tor) and email applications usually disable JavaScript. This effectively closes a major angle for user fingerprinting.
However, recent findings hint at the potential for privacy leakage through selected Cascading Style Sheets (CSS) features. Nevertheless, the full fingerprinting potential of CSS remains unknown, and it is unclear if attacks apply to more restrictive settings such as email.

In this paper, we systematically investigate the modern dynamic features of CSS and their applicability for script-less fingerprinting, bypassing many state-of-the-art mitigations. We present three innovative techniques based on fuzzing and templating that exploit nuances in CSS container queries, arithmetic functions, and complex selectors. This allows us to infer detailed application, OS, and hardware configurations at high accuracy. For browsers, we can distinguish 97.95% of 1176 tested browser-OS combinations. Our methods also apply to email applications - as shown for 8 out of 21 tested web, desktop or mobile email applications. This demonstrates that fingerprinting is possible in the highly restrictive setting of HTML emails and expands the scope of tracking beyond traditional web environments.

In response to these and potential future CSS-based tracking capabilities, we propose two defense mechanisms that eliminate the root causes of privacy leakage. For browsers, we propose to preload conditional resources, which eliminates feature-dependent leakage. For the email setting, we design an email proxy service that retains privacy and email integrity while largely preserving feature compatibility. Our work provides new insights and solutions to the ongoing privacy debate, highlighting the importance of robust defenses against emerging tracking methods.

View More Papers

“Do We Call Them That? Absolutely Not.”: Juxtaposing the...

Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Luca Favaro (Technical University of Munich), and Florian Matthes (Technical University of Munich)

Read More

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy…

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More