Behrad Tajalli (Radboud University), Stefanos Koffas (Delft University of Technology), Stjepan Picek (Radboud University)

Backdoor attacks in machine learning have drawn significant attention for their potential to compromise models stealthily, yet most research has focused on homogeneous data such as images. In this work, we propose a novel backdoor attack on tabular data, which is particularly challenging due to the presence of both numerical and categorical features.
Our key idea is a novel technique to convert categorical values into floating-point representations. This approach preserves enough information to maintain clean-model accuracy compared to traditional methods like one-hot or ordinal encoding. By doing this, we create a gradient-based universal perturbation that applies to all features, including categorical ones.

We evaluate our method on five datasets and four popular models. Our results show up to a 100% attack success rate in both white-box and black-box settings (including real-world applications like Vertex AI), revealing a severe vulnerability for tabular data. Our method is shown to surpass the previous works like Tabdoor in terms of performance, while remaining stealthy against state-of-the-art defense mechanisms. We evaluate our attack against Spectral Signatures, Neural Cleanse, Beatrix, and Fine-Pruning, all of which fail to defend successfully against it. We also verify that our attack successfully bypasses popular outlier detection mechanisms.

View More Papers

DUALBREACH: Efficient Dual-Jailbreaking via Target-Driven Initialization and Multi-Target Optimization

Xinzhe Huang (Zhejiang university), Kedong Xiu (Zhejiang university), Tianhang Zheng (Zhejiang university), Churui Zeng (Zhejiang university), Wangze Ni (Zhejiang university), Zhan Qin (Zhejiang university), Kui Ren (Zhejiang university), Chun Chen (Zhejiang university)

Read More

Should I Trust You? Rethinking the Principle of Zone-Based...

Yuxiao Wu (Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University), Yunyi Zhang (Tsinghua University), Chaoyi Lu (Zhongguancun Laboratory), Baojun Liu (Tsinghua University; Zhongguancun Laboratory)

Read More

cwPSU: Efficient Unbalanced Private Set Union via Constant-weight Codes

Qingwen Li (Xidian University), Song Bian (Beihang University), Hui Li (Xidian University)

Read More