Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Memory safety violations are a significant concern in real-world programs, prompting the development of various mitigation methods. However, existing cost-efficient defenses provide limited protection and can be bypassed by sophisticated attacks, necessitating the combination of multiple defenses. Unfortunately, combining these defenses often results in performance degradation and compatibility issues.

We present CCTAG, a lightweight architecture that simplifies the integration of diverse tag-based defense mechanisms. It offers configurable tag verification and modification rules to build various security policies, acting as basic protection primitives for defense applications. Its policy-centric mask design boosts flexibility and prevents conflicts, enabling multiple defense mechanisms to run concurrently. Our RISC-V prototype on an FPGA board demonstrates that CCTAG incurs minimal hardware overhead, with a slight increase in LUTs (6.77%) and FFs (8.02%). With combined protections including ret address protection, code pointer and vtable pointer integrity, and memory coloring, the SPEC CPU CINT2006 and CINT2017 benchmarks report low runtime overheads of 4.71% and 7.93%, respectively. Security assessments with CVEs covering major memory safety vulnerabilities and various exploitation techniques verify CCTAG’s effectiveness in mitigating real-world threats.

View More Papers

Secure IP Address Allocation at Cloud Scale

Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More