HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

JavaScript engines are an attractive target for attackers due to their popularity and flexibility in building exploits. Current state-of-the-art fuzzers for finding JavaScript engine vulnerabilities focus mainly on generating syntactically correct test cases based on either a predefined context-free grammar or a trained probabilistic language model. Unfortunately, syntactically correct JavaScript sentences are often semantically invalid at runtime. Furthermore, statically analyzing the semantics of JavaScript code is challenging due to its dynamic nature: JavaScript code is generated at runtime, and JavaScript expressions are dynamically-typed. To address this challenge, we propose a novel test case generation algorithm that we call semantics-aware assembly, and implement it in a fuzz testing tool termed CodeAlchemist. Our tool can generate arbitrary JavaScript code snippets that are both semantically and syntactically correct, and it effectively yields test cases that can crash JavaScript engines. We found numerous vulnerabilities of the latest JavaScript engines with CodeAlchemist and reported them to the vendors.

View More Papers

SANCTUARY: ARMing TrustZone with User-space Enclaves

Ferdinand Brasser (Technische Universität Darmstadt), David Gens (Technische Universität Darmstadt), Patrick Jauernig (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Emmanuel Stapf (Technische Universität Darmstadt)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More

Unveiling your keystrokes: A Cache-based Side-channel Attack on Graphics...

Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Read More