Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Blockchain networks, especially cryptocurrencies, rely heavily on proof-of-work (PoW) systems, often as a basis to distribute rewards. These systems require solving specific puzzles, where Application Specific Integrated Circuits (ASICs) can be designed for performance or efficiency. Either way, ASICs surpass CPUs and GPUs by orders of magnitude, and may harm blockchain networks. Recently, Equihash is developed to resist ASIC solving with heavy memory usage. Although commercial ASIC solvers exist for its most popular parameter set, such solvers do not work under better ones, and are considered impossible under optimal parameters. In this paper, we inspect the ASIC resistance of Equihash by constructing a parameter-independent adversary solver design. We evaluate the product, and project at least 10x efficiency advantage for resourceful adversaries. We contribute to the security community in two ways: (1) by revealing the limitation of Equihash and raising awareness about its algorithmic factors, and (2) by demonstrating that security inspection is practical and useful on PoW systems, serving as a start point for future research and development.

View More Papers

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee (Seoul National University), Zach Smith (University of Luxembourg), Junghwan Lim (Seoul National University), Gyeongjae Choi (Seoul National University), Selin Chun (Seoul National University), Taejoong Chung (Rochester Institute of Technology), Ted "Taekyoung" Kwon (Seoul National University)

Read More