Hieu Le (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Zubair Shafiq (University of California, Davis)

The adblocking arms race has escalated over the last few years. An entire new ecosystem of circumvention (CV) services has recently emerged that aims to bypass adblockers by obfuscating site content, making it difficult for adblocking filter lists to distinguish between ads and functional content. In this paper, we investigate recent anti-circumvention efforts by the adblocking community that leverage custom filter lists. In particular, we analyze the anti-circumvention filter list (ACVL), which supports advanced filter rules with enriched syntax and capabilities designed specifically to counter circumvention. We show that keeping ACVL rules up-to-date requires expert list curators to continuously monitor sites known to employ CV services and to discover new such sites in the wild — both tasks require considerable manual effort. To help automate and scale ACVL curation, we develop CV-INSPECTOR, a machine learning approach for automatically detecting adblock circumvention using differential execution analysis. We show that CV-INSPECTOR achieves 93% accuracy in detecting sites that successfully circumvent adblockers. We deploy CV-INSPECTOR on top-20K sites to discover the sites that employ circumvention in the wild.We further apply CV-INSPECTOR to a list of sites that are known to utilize circumvention and are closely monitored by ACVL authors. We demonstrate that CV-INSPECTOR reduces the human labeling effort by 98%, which removes a major bottleneck for ACVL authors. Our work is the first large-scale study of the state of the adblock circumvention arms race, and makes an important step towards automating anti-CV efforts.

View More Papers

Trust the Crowd: Wireless Witnessing to Detect Attacks on...

Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Read More

SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets

Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Read More

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile...

Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

Read More