Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

IMSI-Catchers allow parties other than cellular network providers to covertly track mobile device users. While the research community has developed many tools to combat this problem, current solutions focus on correlated behavior and are therefore subject to substantial false classifications. In this paper, we present a standards-driven methodology that focuses on the messages an IMSI-Catcher textit{must} use to cause mobile devices to provide their permanent identifiers. That is, our approach focuses on causal attributes rather than correlated ones. We systematically analyze message flows that would lead to IMSI exposure (most of which have not been previously considered in the research community), and identify 53 messages an IMSI-Catcher can use for its attack. We then perform a measurement study on two continents to characterize the ratio in which connections use these messages in normal operations. We use these benchmarks to compare against open-source IMSI-Catcher implementations and then observe anomalous behavior at a large-scale event with significant media attention. Our analysis strongly implies the presence of an IMSI-Catcher at said public event ($p << 0.005$), thus representing the first publication to provide evidence of the statistical significance of its findings.

View More Papers

Exploring User Perceptions of Security Auditing in the Web3...

Molly Zhuangtong Huang (University of Macau), Rui Jiang (University of Macau), Tanusree Sharma (Pennsylvania State University), Kanye Ye Wang (University of Macau)

Read More

Revisiting Physical-World Adversarial Attack on Traffic Sign Recognition: A...

Ningfei Wang (University of California, Irvine), Shaoyuan Xie (University of California, Irvine), Takami Sato (University of California, Irvine), Yunpeng Luo (University of California, Irvine), Kaidi Xu (Drexel University), Qi Alfred Chen (University of California, Irvine)

Read More

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More