Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Sharing training data for deep learning raises critical concerns about data leakage, as third-party AI developers take full control over the data once it is handed over to them. The problem becomes even worse if the model trained using the data should be returned to the third-party AI developers - e.g., healthcare startup training its own model using the medical data rented from a hospital. In this case, the malicious developers can easily leak the training data through the model as he can construct an arbitrary data flow between them - e.g., directly encoding raw training data into the model, or stealthily biasing the model to resemble the training data. However, current model training frameworks do not provide any protection to prevent such training data leakage, allowing the untrusted AI developers to leak the data without any restriction.

This paper proposes DLBox, a new model training framework to minimize the attack vectors raised by untrusted AI developers. Since it is infeasible to completely prevent data leakage through the model, the goal of DLBox is to allow only a benign model training such that the data leakage through invalid paths are minimized. The key insight of DLBox is that the model training is a statistical process of learning common patterns from a dataset. Based on it, DLBox defines DGM-Rules, which determine whether a model training code from a developer is benign or not. Then, DLBox leverages confidential computing to redesign current model training framework, enforcing only DGM-Rules-based training. Therefore, untrusted AI developers are strictly limited to obtain only the benignly trained model, prohibited from intentionally leaking the data. We implemented the prototype of DLBox on PyTorch with AMD SEV-SNP, and demonstrated that DLBox eliminates large attack vectors by preventing previous attacks (e.g., data encoding, and gradient inversion) while imposing minimal performance overhead.

View More Papers

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More