Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Sharing training data for deep learning raises critical concerns about data leakage, as third-party AI developers take full control over the data once it is handed over to them. The problem becomes even worse if the model trained using the data should be returned to the third-party AI developers - e.g., healthcare startup training its own model using the medical data rented from a hospital. In this case, the malicious developers can easily leak the training data through the model as he can construct an arbitrary data flow between them - e.g., directly encoding raw training data into the model, or stealthily biasing the model to resemble the training data. However, current model training frameworks do not provide any protection to prevent such training data leakage, allowing the untrusted AI developers to leak the data without any restriction.

This paper proposes DLBox, a new model training framework to minimize the attack vectors raised by untrusted AI developers. Since it is infeasible to completely prevent data leakage through the model, the goal of DLBox is to allow only a benign model training such that the data leakage through invalid paths are minimized. The key insight of DLBox is that the model training is a statistical process of learning common patterns from a dataset. Based on it, DLBox defines DGM-Rules, which determine whether a model training code from a developer is benign or not. Then, DLBox leverages confidential computing to redesign current model training framework, enforcing only DGM-Rules-based training. Therefore, untrusted AI developers are strictly limited to obtain only the benignly trained model, prohibited from intentionally leaking the data. We implemented the prototype of DLBox on PyTorch with AMD SEV-SNP, and demonstrated that DLBox eliminates large attack vectors by preventing previous attacks (e.g., data encoding, and gradient inversion) while imposing minimal performance overhead.

View More Papers

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy…

Read More

Misdirection of Trust: Demystifying the Abuse of Dedicated URL...

Zhibo Zhang (Fudan University), Lei Zhang (Fudan University), Zhangyue Zhang (Fudan University), Geng Hong (Fudan University), Yuan Zhang (Fudan University), Min Yang (Fudan University)

Read More