Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

We describe a novel user tracking technique that is based on assigning statistically unique DNS records per user. This new tracking technique is unique in being able to distinguish between machines that have identical hardware and software, and track users even if they use “privacy mode” browsing, or use multiple browsers (on the same machine).
The technique overcomes issues related to the caching of DNS answers in resolvers, and utilizes per-device caching of DNS answers at the client. We experimentally demonstrate that it covers the technologies used by a very large fraction of Internet users (in terms of browsers, operating systems, and DNS resolution platforms).
Our technique can track users for up to a day (typically), and therefore works best when combined with other, narrower yet longer-lived techniques such as regular cookies - we briefly
explain how to combine such techniques.
We suggest mitigations to this tracking technique but note that it is not easily mitigated. There are possible workarounds, yet these are not without setup overhead, performance overhead or convenience overhead. A complete mitigation requires software modifications in both browsers and resolver software.

View More Papers

Time Does Not Heal All Wounds: A Longitudinal Analysis...

Meng Luo (Stony Brook University), Pierre Laperdrix (Stony Brook University), Nima Honarmand (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Life after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice...

Yangyong Zhang (Texas A&M University), Lei Xu (Texas A&M University), Abner Mendoza (Texas A&M University), Guangliang Yang (Texas A&M University), Phakpoom Chinprutthiwong (Texas A&M University), Guofei Gu (Texas A&M University)

Read More