Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Federated learning (FL) allows multiple clients to collaboratively train a global machine learning model through a server, without exchanging their private training data. However, the decentralized aspect of FL makes it susceptible to poisoning attacks, where malicious clients can manipulate the global model by sending altered local model updates. To counter these attacks, a variety of aggregation rules designed to be resilient to Byzantine failures have been introduced. Nonetheless, these methods can still be vulnerable to sophisticated attacks or depend on unrealistic assumptions about the server. In this paper, we demonstrate that there is no need to design new Byzantine-robust aggregation rules; instead, FL can be secured by enhancing the robustness of well-established aggregation rules. To this end, we present FoundationFL, a novel defense mechanism against poisoning attacks. FoundationFL involves the server generating synthetic updates after receiving local model updates from clients. It then applies existing Byzantine-robust foundational aggregation rules, such as Trimmed-mean or Median, to combine clients' model updates with the synthetic ones. We theoretically establish the convergence performance of FoundationFL under Byzantine settings. Comprehensive experiments across several real-world datasets validate the efficiency of our FoundationFL method.

View More Papers

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

Welcome to Jurassic Park: A Comprehensive Study of Security...

Abdullah AlHamdan (CISPA Helmholtz Center for Information Security), Cristian-Alexandru Staicu (CISPA Helmholtz Center for Information Security)

Read More

Work-in-Progress: Towards Browser-Based Consent Management

Gayatri Priyadarsini Kancherla and Abhishek Bichhawat (Indian Institute of Technology Gandhinagar)

Read More