Shuo Wang (CSIRO's Data61 & Cybersecurity CRC, Australia), Mahathir Almashor (CSIRO's Data61 & Cybersecurity CRC, Australia), Alsharif Abuadbba (CSIRO's Data61 & Cybersecurity CRC, Australia), Ruoxi Sun (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Calvin Wang (CSIRO's Data61), Raj Gaire (CSIRO's Data61 & Cybersecurity CRC, Australia), Surya Nepal (CSIRO's Data61 & Cybersecurity CRC, Australia), Seyit Camtepe (CSIRO's…

Traditional block/allow lists remain a significant defense against malicious websites, by limiting end-users' access to domain names. However, such lists are often incomplete and reactive in nature. In this work, we first introduce an expansion graph which creates organically grown Internet domain allow-lists based on trust transitivity by crawling hyperlinks. Then, we highlight the gap of monitoring nodes with such an expansion graph, where malicious nodes are buried deep along the paths from the compromised websites, termed as "on-chain compromise". The stealthiness (evasion of detection) and large-scale issues impede the application of existing web malicious analysis methods for identifying on-chain compromises within the sparsely labeled graph. To address the unique challenges of revealing the on-chain compromises, we propose a two-step integrated scheme, DoITrust, leveraging both individual node features and topology analysis: (i) we develop a semi-supervised suspicion prediction scheme to predict the probability of a node being relevant to targets of compromise (i.e., the denied nodes), including a novel node ranking approach as an efficient global propagation scheme to incorporate the topology information, and a scalable graph learning scheme to separate the global propagation from the training of the local prediction model, and (ii) based on the suspicion prediction results, efficient pruning strategies are proposed to further remove highly suspicious nodes from the crawled graph and analyze the underlying indicator of compromise. Experimental results show that DoITrust achieves 90% accuracy using less than 1% labeled nodes for the suspicion prediction, and its learning capability outperforms existing node-based and structure-based approaches. We also demonstrate that DoITrust is portable and practical. We manually review the detected compromised nodes, finding that at least 94.55% of them have suspicious content, and investigate the underlying indicator of on-chain compromise.

View More Papers

Sometimes, You Aren’t What You Do: Mimicry Attacks against...

Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig (Technical University of Darmstadt), Domagoj Jakobovic (University of Zagreb, Croatia), Stjepan Picek (Radboud University and TU Delft), Emmanuel Stapf (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Fine-Grained Trackability in Protocol Executions

Ksenia Budykho (Surrey Centre for Cyber Security, University of Surrey, UK), Ioana Boureanu (Surrey Centre for Cyber Security, University of Surrey, UK), Steve Wesemeyer (Surrey Centre for Cyber Security, University of Surrey, UK), Daniel Romero (NCC Group), Matt Lewis (NCC Group), Yogaratnam Rahulan (5G/6G Innovation Centre - 5GIC/6GIC, University of Surrey, UK), Fortunat Rajaona (Surrey…

Read More