Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

As Non-Fungible Tokens (NFTs) continue to grow in popularity, NFT users have become targets of phishing scammers, called NFT drainers. Over the last year, $100 million worth of NFTs were stolen by drainers, and their presence remains a serious threat to the NFT trading space. However, no work has yet comprehensively investigated the behaviors of drainers in the NFT ecosystem.

In this paper, we present the first study on the trading behavior of NFT drainers and introduce the first dedicated NFT drainer detection system. We collect 127M NFT transaction data from the Ethereum blockchain and 1,135 drainer accounts from five sources for the year 2022. We find that drainers exhibit significantly different transactional and social contexts from those of regular users. With these insights, we design DRAINCLoG, an automatic drainer detection system utilizing Graph Neural Networks. This system effectively captures the multifaceted web of interactions within the NFT space through two distinct graphs: the NFT-User graph for transaction contexts and the User graph for social contexts. Evaluations using real-world NFT transaction data underscore the robustness and precision of our model. Additionally, we analyze the security of DRAINCLoG under a wide variety of evasion attacks.

View More Papers

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Shulman (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

SOC Service Areas: Identification, Prioritization, and Implementation

Christopher Rodman, Breanna Kraus, Justin Novak (SEI/CERT)

Read More