Xinzhe Huang (Zhejiang university), Kedong Xiu (Zhejiang university), Tianhang Zheng (Zhejiang university), Churui Zeng (Zhejiang university), Wangze Ni (Zhejiang university), Zhan Qin (Zhejiang university), Kui Ren (Zhejiang university), Chun Chen (Zhejiang university)

Recent research has focused on exploring the vulnerabilities of Large Language Models (LLMs), aiming to elicit harmful and/or sensitive content from LLMs. However, due to the insufficient research on dual-jailbreaking---attacks targeting both LLMs and Guardrails, the effectiveness of existing attacks is limited when attempting to bypass safety-aligned LLMs shielded by guardrails. Therefore, in this paper, we propose DualBreach, a target-driven framework for dual-jailbreaking. DualBreach employs a textit{Target-driven Initialization} (TDI) strategy to dynamically construct initial prompts, combined with a textit{Multi-Target Optimization} (MTO) method that utilizes approximate gradients to jointly adapt the prompts across guardrails and LLMs, which can simultaneously save the number of queries and achieve a high dual-jailbreaking success rate. For black-box guardrails, DualBreach either employs a powerful open-sourced guardrail or imitates the target black-box guardrail by training a proxy model, to incorporate guardrails into the MTO process.

We demonstrate the effectiveness of DualBreach in dual-jailbreaking scenarios through extensive evaluation on several widely-used datasets. Experimental results indicate that DualBreach outperforms state-of-the-art methods with fewer queries, achieving significantly higher success rates across all settings. More specifically, DualBreach achieves an average dual-jailbreaking success rate of 93.67% against GPT-4 with Llama-Guard-3 protection, whereas the best success rate achieved by other methods is 88.33%. Moreover, DualBreach only uses an average of 1.77 queries per successful dual-jailbreak, outperforming other state-of-the-art methods. For defense, we propose an XGBoost-based ensemble defensive mechanism named textsc{EGuard}, which integrates the strengths of multiple guardrails, demonstrating superior performance compared with Llama-Guard-3.

View More Papers

Convergent Privacy Framework for Multi-layer GNNs through Contractive Message...

Yu Zheng (University of California, Irvine), Chenang Li (University of California, Irvine), Zhou Li (University of California, Irvine), Qingsong Wang (University of California, San Diego)

Read More

SYSYPHUZZ: the Pressure of More Coverage

Zezhong Ren (University of Chinese Academy of Sciences; EPFL), Han Zheng (EPFL), Zhiyao Feng (EPFL), Qinying Wang (EPFL), Marcel Busch (EPFL), Yuqing Zhang (University of Chinese Academy of Sciences), Chao Zhang (Tsinghua University), Mathias Payer (EPFL)

Read More

FlyTrap: Physical Distance-Pulling Attack Towards Camera-based Autonomous Target Tracking...

Shaoyuan Xie (University of California, Irvine), Mohamad Habib Fakih (University of California, Irvine), Junchi Lu (University of California, Irvine), Fayzah Alshammari (University of California, Irvine), Ningfei Wang (University of California, Irvine), Takami Sato (University of California, Irvine), Halima Bouzidi (University of California Irvine), Mohammad Abdullah Al Faruque (University of California, Irvine), Qi Alfred Chen (University…

Read More