Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zhiyuan Jiang (National University of Defense Technology), Jiahai Yang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University)

Hidden web interfaces, i.e., undisclosed access channels in IoT devices, introduce great security risks and have resulted in severe attacks in recent years. However, the definition of such threats is vague, and few solutions are able to discover them. Due to their hidden nature, traditional bug detection solutions (e.g., taint analysis, fuzzing) are hard to detect them. In this paper, we present a novel solution EAGLEYE to automatically expose hidden web interfaces in IoT devices. By analyzing input requests to public interfaces, we first identify routing tokens within the requests, i.e., those values (e.g., actions or file names) that are referenced and used as index by the firmware code (routing mechanism) to find associated handler functions. Then, we utilize modern large language models to analyze the contexts of such routing tokens and deduce their common pattern, and then infer other candidate values (e.g., other actions or file names) of these tokens. Lastly, we perform a hidden-interface directed black-box fuzzing, which mutates the routing tokens in input requests with these candidate values as the high-quality dictionary. We have implemented a prototype of EAGLEYE and evaluated it on 13 different commercial IoT devices. EAGLEYE successfully found 79 hidden interfaces, 25X more than the state-of-the-art (SOTA) solution IoTScope. Among them, we further discovered 29 unknown vulnerabilities including backdoor, XSS (cross-site scripting), command injection, and information leakage, and have received 7 CVEs.

View More Papers

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

PBP: Post-training Backdoor Purification for Malware Classifiers

Dung Thuy Nguyen (Vanderbilt University), Ngoc N. Tran (Vanderbilt University), Taylor T. Johnson (Vanderbilt University), Kevin Leach (Vanderbilt University)

Read More

Five Word Password Composition Policy

Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Read More

Logical Maneuvers: Detecting and Mitigating Adversarial Hardware Faults in...

Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Read More