In vehicles, internal Electronic Control Units (ECUs) are increasingly prone to adversarial exploitation over wireless connections due to ongoing digitalization. Controlling an ECU allows an adversary to send messages to the internal vehicle bus and thereby to control various vehicle functions. Access to the Controller Area Network (CAN), the most widely used bus technology, is especially severe as it controls brakes and steering. However, state of the art receivers are not able to identify the sender of a frame. Retrofitting frame authenticity, e.g. through Message Authentication Codes (MACs), is only possible to a limited extent due to reduced bandwidth, low payload and limited computational resources. To address this problem, observation in analog differences of the CAN signal was proposed to determine the actual sender. These prior approaches, which exhibit good identification rates in some cases, require high sample rates and a high computational effort. With EASI we significantly reduce the required resources and at the same time show increased identification rates of 99.98% by having no false positives in a prototype structure and two series production vehicles. In comparison to the most lightweight approach so far, we have reduced the memory footprint and the computational requirements by a factor of 168 and 142, respectively. In addition, we show the feasibility of EASI and thus for the first time that sender identification is realizable using comprehensive signal characteristics on resource-constrained platforms. Due to the lightweight design, we achieved a classification in under 100,$mu$s with a training time of 2.61 seconds. We also showed the ability to adapt the system to incremental changes during operation. Since cost effectiveness is of utmost importance in the automotive industry due to high production volumes, the achieved improvements are significant and necessary to realize sender identification.

View More Papers

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton...

Read More

Locally Differentially Private Frequency Estimation with Consistency

Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology),...

Read More

Broken Metre: Attacking Resource Metering in EVM

Daniel Perez (Imperial College London), Benjamin Livshits (Imperial College London, UCL Centre for Blockchain Technologies, and Brave Software)

Read More

Compliance Cautions: Investigating Security Issues Associated with U.S. Digital-Security...

Rock Stevens (University of Maryland), Josiah Dykstra (Independent Security Researcher), Wendy Knox Everette (Leviathan Security Group), James Chapman (Independent Security...

Read More