Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Understanding the vulnerability of virtual reality (VR) is crucial for protecting sensitive data and building user trust in VR ecosystems. Previous attacks have demonstrated the feasibility of inferring VR keystrokes inside head-mounted displays (HMDs) by recording side-channel signals generated during user-HMD interactions. However, these attacks are heavily constrained by the physical layout or victim pose in the attack scenario since the recording device must be strictly positioned and oriented in a particular way with respect to the victim. In this paper, we unveil a placement-flexible keystroke inference attack in VR by eavesdropping the clicking sounds of the moving hand controller during keystrokes. The malicious recording smartphone can be placed anywhere surrounding the victim, making the attack more flexible and practical to deploy in VR environments. As the first acoustic attack in VR, our system, Heimdall, overcomes unique challenges unaddressed by previous acoustic attacks on physical keyboards and touchscreens. These challenges include differentiating sounds in a 3D space, adaptive mapping between keystroke sound and key in varying recording placement, and handling occasional hand rotations. Experiments with 30 participants show that Heimdall achieves key inference accuracy of 96.51% and top-5 accuracy of 85.14%-91.22% for inferring passwords with 4-8 characters. Heimdall is also robust under various practical impacts such as smartphone-user placement, attack environments, hardware models, and victim conditions.

View More Papers

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More

Vision: An Exploration of Online Toxic Content Against Refugees

Arjun Arunasalam (Purdue University), Habiba Farrukh (University of California, Irvine), Eliz Tekcan (Purdue University), Z. Berkay Celik (Purdue University)

Read More

On Precisely Detecting Censorship Circumvention in Real-World Networks

Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More