Tung Le (Virginia Tech), Pengzhi Huang (Cornell University), Attila A. Yavuz (University of South Florida), Elaine Shi (CMU), Thang Hoang (Virginia Tech)

Storage-as-a-service (STaaS) permits the client to outsource her data to the cloud thereby, reducing data management and maintenance costs. However, STaaS also brings significant data integrity and soundness concerns since the storage provider might not keep the client data intact and retrievable all the time (e.g., cost saving via deletions). Proof of Retrievability (PoR) can validate the integrity and retrievability of remote data effectively. This technique can be useful for regular audits to monitor data compromises, as well as to comply with standard data regulations. In particular, cold storage applications (e.g., MS Azure, Amazon Glacier) require regular and frequent audits but with less frequent data modification. Yet, despite their merits, existing PoR techniques generally focus on other metrics (e.g., low storage, fast update, metadata privacy) but not audit efficiency (e.g., low audit time, small proof size). Hence, there is a need to develop new PoR techniques that achieve efficient data audit while preserving update and retrieval performance.

In this paper, we propose Porla, a new PoR framework that permits efficient data audit, update, and retrieval functionalities simultaneously. Porla permits data audit in both private and public settings, each of which features asymptotically (and concretely) smaller audit-proof size and lower audit time than all the prior works while retaining the same asymptotic data update overhead. Porla achieves all these properties by composing erasure codes with verifiable computation techniques which, to our knowledge, is a new approach to PoR design. We address several challenges that arise in such a composition by creating a new homomorphic authenticated commitment scheme, which can be of independent interest. We fully implemented Porla and evaluated its performance on commodity cloud (i.e., Amazon EC2) under various settings. Experimental results demonstrated that Porla achieves two to four orders of magnitude smaller audit proof size with 4× – 1,800× lower audit time than all prior schemes in both private and public audit settings at the cost of only 2× – 3× slower update.

View More Papers

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

Formally Verified Software Update Management System in Automotive

Jaewan Seo, Jiwon Kwak, Seungjoo Kim (Korea University)

Read More