Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

To evade existing antivirus software and detection systems, ransomware authors tend to obscure behavior differences with benign programs by imitating them or by weakening malicious behaviors during encryption. Existing defense solutions have limited effects on defending against evasive ransomware. Fortunately, through extensive observation, we find I/O behaviors of evasive ransomware exhibit a unique repetitiveness during encryption. This is rarely observed in benign programs. Besides, the $chi^2$ test and the probability distribution of byte streams can effectively distinguish encrypted files from benignly modified files. Inspired by these, we first propose ERW-Radar, a detection system, to detect evasive ransomware accurately and efficiently. We make three breakthroughs: 1) a contextual emph{Correlation} mechanism to detect malicious behaviors; 2) a fine-grained content emph{Analysis} mechanism to identify encrypted files; and 3) adaptive mechanisms to achieve a better trade-off between accuracy and efficiency. Experiments show that ERW-Radar detects evasive ransomware with an accuracy of 96.18% while maintaining a FPR of 5.36%. The average overhead of ERW-Radar is 5.09% in CPU utilization and 3.80% in memory utilization.

View More Papers

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

Secret Spilling Drive: Leaking User Behavior through SSD Contention

Jonas Juffinger (Graz University of Technology), Fabian Rauscher (Graz University of Technology), Giuseppe La Manna (Amazon), Daniel Gruss (Graz University of Technology)

Read More