Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

To evade existing antivirus software and detection systems, ransomware authors tend to obscure behavior differences with benign programs by imitating them or by weakening malicious behaviors during encryption. Existing defense solutions have limited effects on defending against evasive ransomware. Fortunately, through extensive observation, we find I/O behaviors of evasive ransomware exhibit a unique repetitiveness during encryption. This is rarely observed in benign programs. Besides, the $chi^2$ test and the probability distribution of byte streams can effectively distinguish encrypted files from benignly modified files. Inspired by these, we first propose ERW-Radar, a detection system, to detect evasive ransomware accurately and efficiently. We make three breakthroughs: 1) a contextual emph{Correlation} mechanism to detect malicious behaviors; 2) a fine-grained content emph{Analysis} mechanism to identify encrypted files; and 3) adaptive mechanisms to achieve a better trade-off between accuracy and efficiency. Experiments show that ERW-Radar detects evasive ransomware with an accuracy of 96.18% while maintaining a FPR of 5.36%. The average overhead of ERW-Radar is 5.09% in CPU utilization and 3.80% in memory utilization.

View More Papers

Impact Tracing: Identifying the Culprit of Misinformation in Encrypted...

Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More