Isaiah J. King (The George Washington University)

Lateral movement is a key stage of system compromise used by advanced persistent threats, and detecting it is no simple task. But when network host logs are abstracted into discrete temporal graphs, the problem can be reframed as anomalous edge detection in an evolving network. We have implemented a formalized approach to this problem with a framework we call Euler. It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence encoding layer such as a recurrent neural network. In this talk, we will discuss the challenges we faced comparing Euler to other link prediction and anomaly detection models, and how we justified and qualified our conclusions about its effectiveness. We proposed a more precise terminology for temporal link prediction tasks to aid in reproducibility. Assertions about the relative quality of models are backed with inferential statistics, not just performance metrics, ensuring fair comparison. Finally, we discuss the value of various metrics and data sets for anomaly detection in general.

Speaker's biography

Isaiah J. King is a Ph.D. student at the George Washington University School of Engineering and Applied Sciences and an ARCS scholar. His research interests include unsupervised machine learning on graphs, and distributed machine learning, particularly as they apply to intrusion detection systems.

View More Papers

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More