Embedded devices are ubiquitous. However, preliminary evidence shows that attack mitigations protecting our desktops/servers/phones are missing in embedded devices, posing a significant threat to embedded security. To this end, this paper presents an in-depth study on the adoption of common attack mitigations on embedded devices. Precisely, it measures the presence of standard mitigations against memory corruptions in over 10k Linux-based firmware of deployed embedded devices.

The study reveals that embedded devices largely omit both user-space and kernel-level attack mitigations. The adoption rates on embedded devices are multiple times lower than their desktop counterparts. An equally important observation is that the situation is not improving over time. Without changing the current practices, the attack mitigations will remain missing, which may become a bigger threat in the upcoming IoT era.

Throughout follow-up analyses, we further inferred a set of factors possibly contributing to the absence of attack mitigations. The exemplary ones include massive reuse of non-protected software, lateness in upgrading outdated kernels, and restrictions imposed by automated building tools. We envision these will turn into insights towards improving the adoption of attack mitigations on embedded devices in the future.

View More Papers

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University...

Read More

HARPO: Learning to Subvert Online Behavioral Advertising

Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq...

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at...

Read More

GhostTalk: Interactive Attack on Smartphone Voice System Through Power...

Yuanda Wang (Michigan State University), Hanqing Guo (Michigan State University), Qiben Yan (Michigan State University)

Read More