Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University), Yan Shoshitaishvili (Arizona State University)

JavaScript runtime systems include some specialized programming interfaces, called binding layers. Binding layers translate data representations between JavaScript and unsafe low-level languages, such as C and C++, by converting data between different types. Due to the wide adoption of JavaScript (and JavaScript engines) in the entire computing ecosystem, discovering bugs in JavaScript binding layers is critical. Nonetheless, existing JavaScript fuzzers cannot adequately fuzz binding layers due to two major challenges: Generating syntactically and semantically correct test cases, and reducing the size of the input space for fuzzing.

In this paper, we propose Favocado, a novel fuzzing approach that focuses on fuzzing binding layers of JavaScript runtime systems. Favocado can generate syntactically and semantically correct JavaScript test cases through the use of extracted semantic information and careful maintaining of execution states. This way, test cases that Favocado generates do not raise unintended runtime exceptions, which substantially increases the chance of triggering binding code. Additionally, exploiting a unique feature (relative isolation) of binding layers, Favocado significantly reduces the size of the fuzzing input space by splitting DOM objects into equivalence classes and focusing fuzzing within each equivalence class.

We demonstrate the effectiveness of Favocado in our experiments and show that Favocado outperforms another state-of-the-art DOM fuzzer and discovers six times more bugs. Finally, during the evaluation, we find 61 previously unknown bugs in four JavaScript runtime systems (Adobe Acrobat Reader, Foxit PDF Reader, Chromium, and WebKit). 33 of these bugs are security vulnerabilities.

View More Papers

Screen Gleaning: Receiving and Interpreting Pixels by Eavesdropping on...

Zhuoran Liu, Léo Weissbart, Dirk Lauret (Radboud University)

Read More

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile...

Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

Read More

PyPANDA: Taming the PANDAmonium of Whole System Dynamic Analysis

Luke Craig, Tim Leek (MIT Lincoln Laboratory), Andrew Fasano, Tiemoko Ballo (MIT Lincoln Laboratory, Northeastern University), Brendan Dolan-Gavitt (New York University), William Robertson (Northeastern University)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More