Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

BGP route leaks frequently precipitate serious disruptions to inter-domain routing. These incidents have plagued the Internet for decades while deployment and usability issues cripple efforts to mitigate the problem. Peerlock, introduced in 2016, addresses route leaks with a new approach. Peerlock enables filtering agreements between transit providers to protect their own networks without the need for broad cooperation or a trust infrastructure. We outline the Peerlock system and one variant, Peerlock-lite, and conduct live Internet experiments to measure their deployment on the control plane. Our measurements find evidence for significant Peerlock protection between Tier 1 networks in the peering clique, where 48% of potential Peerlock filters are deployed, and reveal that many other networks also deploy filters against Tier 1 leaks. To guide further deployment, we also quantify Peerlock’s impact on route leaks both at currently observed levels and under hypothetical future deployment scenarios via BGP simulation. These experiments reveal present Peerlock deployment restricts Tier 1 leak export to 10% or fewer networks for 40% of simulated leaks. Strategic additional Peerlock-lite deployment at all large ISPs (<1% of all networks), in tandem with Peerlock within the peering clique as deployed, completely mitigates about 80% of simulated Tier 1 route leaks.

View More Papers

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

Demo #3: Detecting Illicit Drone Video Filming Using Cryptanalysis

Ben Nassi, Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovic (Ben-Gurion University of the Negev)

Read More

Shadow Attacks: Hiding and Replacing Content in Signed PDFs

Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Read More

NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces

Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Read More