Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

BGP route leaks frequently precipitate serious disruptions to inter-domain routing. These incidents have plagued the Internet for decades while deployment and usability issues cripple efforts to mitigate the problem. Peerlock, introduced in 2016, addresses route leaks with a new approach. Peerlock enables filtering agreements between transit providers to protect their own networks without the need for broad cooperation or a trust infrastructure. We outline the Peerlock system and one variant, Peerlock-lite, and conduct live Internet experiments to measure their deployment on the control plane. Our measurements find evidence for significant Peerlock protection between Tier 1 networks in the peering clique, where 48% of potential Peerlock filters are deployed, and reveal that many other networks also deploy filters against Tier 1 leaks. To guide further deployment, we also quantify Peerlock’s impact on route leaks both at currently observed levels and under hypothetical future deployment scenarios via BGP simulation. These experiments reveal present Peerlock deployment restricts Tier 1 leak export to 10% or fewer networks for 40% of simulated leaks. Strategic additional Peerlock-lite deployment at all large ISPs (<1% of all networks), in tandem with Peerlock within the peering clique as deployed, completely mitigates about 80% of simulated Tier 1 route leaks.

View More Papers

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile...

Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More