Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

An Unrestricted File Upload (UFU) vulnerability is a critical security threat that enables an adversary to upload her choice of a forged file to a target web server. This bug evolves into an Unrestricted Executable File Upload (UEFU) vulnerability when the adversary is able to conduct remote code execution of the uploaded file via triggering its URL. We design and implement FUSE, the first penetration testing tool designed to discover UFU and UEFU vulnerabilities in server-side PHP web applications. The goal of FUSE is to generate upload requests; each request becomes an exploit payload that triggers a UFU or UEFU vulnerability. However, this approach entails two technical challenges: (1) it should generate an upload request that bypasses all content-filtering checks present in a target web application; and (2) it should preserve the execution semantic of the resulting uploaded file. We address these technical challenges by mutating standard upload requests with carefully designed mutation operations that enable the bypassing of content- filtering checks and do not tamper with the execution of uploaded files. FUSE discovered 30 previously unreported UEFU vulnerabilities, including 15 CVEs from 33 real-world web applications, thereby demonstrating its efficacy in finding code execution bugs via file uploads.

View More Papers

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

Et Tu Alexa? When Commodity WiFi Devices Turn into...

Yanzi Zhu (UC Santa Barbara), Zhujun Xiao (University of Chicago), Yuxin Chen (University of Chicago), Zhijing Li (UC Santa Barbara), Max Liu (University of Chicago), Ben Y. Zhao (University of Chicago), Heather Zheng (University of Chicago)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More