Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

An Unrestricted File Upload (UFU) vulnerability is a critical security threat that enables an adversary to upload her choice of a forged file to a target web server. This bug evolves into an Unrestricted Executable File Upload (UEFU) vulnerability when the adversary is able to conduct remote code execution of the uploaded file via triggering its URL. We design and implement FUSE, the first penetration testing tool designed to discover UFU and UEFU vulnerabilities in server-side PHP web applications. The goal of FUSE is to generate upload requests; each request becomes an exploit payload that triggers a UFU or UEFU vulnerability. However, this approach entails two technical challenges: (1) it should generate an upload request that bypasses all content-filtering checks present in a target web application; and (2) it should preserve the execution semantic of the resulting uploaded file. We address these technical challenges by mutating standard upload requests with carefully designed mutation operations that enable the bypassing of content- filtering checks and do not tamper with the execution of uploaded files. FUSE discovered 30 previously unreported UEFU vulnerabilities, including 15 CVEs from 33 real-world web applications, thereby demonstrating its efficacy in finding code execution bugs via file uploads.

View More Papers

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

Automated Discovery of Cross-Plane Event-Based Vulnerabilities in Software-Defined Networking

Benjamin E. Ujcich (University of Illinois at Urbana-Champaign), Samuel Jero (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez (MIT Lincoln Laboratory), Adam Bates (University of Illinois at Urbana-Champaign), William H. Sanders (University of Illinois at Urbana-Champaign), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More

When Malware is Packin' Heat; Limits of Machine Learning...

Hojjat Aghakhani (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Francesco Mecca (Università degli Studi di Torino), Martina Lindorfer (TU Wien), Stefano Ortolani (Lastline Inc.), Davide Balzarotti (Eurecom), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara)

Read More