Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Enterprises are increasingly outsourcing network management (e.g., troubleshooting routing issues) to reduce cost and improve efficiency, either by hiring third-party contractors or by outsourcing to third-party vendors. Unfortunately, recent events have shown that this outsourcing model has become a new source of network incidents in customer networks. In this work, we argue that a risk-aware outsourcing approach is needed that enables customers to measure and assess risk transparently and make informed decisions to minimize harm. We first concretely define the notion of risk in the context of outsourced network management and then present an end-to-end framework, called Heimdall, which enables enterprises to assess, monitor, and respond to risk. Heimdall automatically builds a dependency graph to accurately assess the risk of an outsourced task, and uses a fine-grained reference monitor to monitor and mitigate potential risks during operation. Our expert validation results show that Heimdall effectively controls risk for outsourced network operations, resolving 92% of practical issues at the minimal risk level while incurring only a marginal timing overhead of approximately 7%.

View More Papers

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

EvoCrawl: Exploring Web Application Code and State using Evolutionary...

Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

Read More